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OVERSHOOTING AND THE u-BARRIER
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ABSTRACT

Using genera arguments and without numerical calculations, we present three complementary “proofs’ that
the extent of overshooting (OV) outside a convective region is decreased by a gradient of the mean molecular

weight.

Subject headings: convection — stars. evolution — stars: interiors— Sun: evolution — Sun: interior —

turbulence

Asdiscussed in an earlier work (Canuto 1997, where rel evant
references to recent work can be found), we still do not have
a theoretical prediction that matches the observational sugges-
tions that both for the Sun (below the convective zone) and
for massive stars the “extent of overshooting” (OV) isasmall
fraction of the local pressure scale height. In massive stars,
there is a further consideration: the mean molecular weight
is an effective barrier to the fluid elements that overshoot into
the radiative region. Thus, two barriers actualy exist: stable
stratification and a u-gradient (e.g., Ledoux 1947; Schwarzsch-
ild & Harm 1958; Kato 1966; Stothers 1970; Langer, Sugimoto,
& Fricke 1983; Umezu 1998). Since overshooting is a dynam-
ical consequence of Newton's law and as such is unavoidable,
we formulate the problem as follows: given an OV (which
cannot be zero) computed as if the medium were homogeneous
(V, =0V, = dInu/InP), what is the effect of a u-gradient?
In this Letter we prove the following result:

OV(V,) < OV(V, = 0). (D)
Of the dynamic equations necessary to describe nonlocal con-
vection (Canuto 1997; Canuto & Dubovikov 1998), we employ
only the one for the turbulent kinetic energy K:

oK
— 4+ D/(K) = gad — €.
at ((K) = ga €

@
Here, g is the local gravity, « is the thermal expansion coef-
ficient (= —p9p0/0T), J is the convective flux F¢ in units of
Ceo, Fe = Copd = ¢ (pwWh) (C, and p are the specific heat and
density), 6 and w are the fluctuating components of the tem-
perature and velocity (in the zdirection), and ¢ is the rate of
dissipation of K. The key ingredient for the description of
overshooting is nonlocality, which in equation (2) is repre-
sented by D(K), the divergence of the flux of turbulent kinetic
energy F,,,

d

D(K) = - Fur Fu = (WK ©

Equations (2) and (3) are exact since no approximation (clo-
sure) is necessary for their derivation (except of course the
Boussinesq approximation, which is well satisfied when
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OV < Hp). The local, stationary limit of equation (2) yields
the MLT (mixing length theory): theright-hand side of equation
(2) vanishes, implying that production equals dissipation. Since
by Kolmogorov law, e = K¥?A™* (A isthe “size” of the largest
eddy), J~ K*2, which is the MLT expression.

How does equation (2) change in the presence of a u-gra-
dient? One can study the problem using the exact equations
for the temperature, velocity and arbitrary concentration field
C (Canuto 1998). Here, we follow a more physical procedure.
Consider the thermal expansion coefficient « that enters equa-
tion (2). It originates from the expansion of the density p =
(o) + o', where

!/

0

—af. @)

In the presence of an additional scalar field like aconcentration,
one has instead
)P,T,

where C is the mean concentration and ¢” is the fluctuating
part of the C field. Much as 6 combines with the velocity w
to give rise to J in equation (2), the new term ¢’ does likewise
and equation (2) becomes

!

dlnp
aC
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—af + acl’, ac= (

oK
— + Dy(K) = gad — ga ¥ — ¢,

P (6)

where the “concentration flux” ¥ is defined as (H; is the pres-
sure scale height)

v =c

)

" aC - -
W= Ko = 'ty K,

Here, K. is the “turbulent diffusion coefficient,” which only a
full model of turbulence can provide (Canuto 1998) but whose
specific form is not needed for our argument. Substituting equa-
tion (7) into equation (6), we obtain the desired equation for
K:

K
™ 4 D(K)

p = gad — (e + gKcH V).

®

The physical interpretation is quite clear: V, increases the dis-
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sipation rate ¢, thus it increases the sink and lowers K. With
less available kinetic energy, one has a smaller overshooting.
Thisresult alone, which is model independent, proves our basic
relation (eg. [1]). However, we can present the result in a more
transparent form. Let us combine equation (6) with flux con-
servation law, F, + F. + F,, = F, (the source of the total flux
is denoted by N, nuclear), where F, is the radiative flux whose
form need not be specified here. Eliminating J = F.(Cop) *
between equation (8) and the latter relation, the stationary limit
of equation (8) becomes a first-order differential equation in
F. that can be integrated. Calling r, , the beginning and end
points of the entire convective zone (including overshooting)
and r, (with r, <r, <r,) the point where the convective flux
F. goes from positive to negative, signaling the beginning of
the OV proper, and introducing the luminosities L = 4xr 2F,
one derives

[ rp

CQJTHLN— L,jdr = Cng2|LN— L, |dr

P P
r [

r2

+4x f T r %pe . dr. 9

Here, the “effective dissipation” e is given by
e eqr = €(1+ gKcHe e 'V) = Qe >e. (10)

With e = 0, equation (9) becomes the relation first introduced
by Roxburgh (1978). However, e cannot be zero. General phys-
ical arguments and recent work by Rosvick & VandenBerg
(1998) show theimportance of e in stellar structure calculations.
Since the second integral in the right-hand side of eguation (9)
is increased by the presence of V, in ey, the OV extent r, —
r., specifically, the integral from r_ to r, need not be large in
order to compensate the left-hand side. Thus, V, decreases the
extent of the OV. Thisis a second way of proving the physical
content of equation (1). Finally, and even more explicitly, we
employ a relation for the decay of the velocity w in the OV,
due to Unno, Kondo, & Xiong (1985):

w(r) = w(r.)e" ™™, P<P, (11)

wherer is an arbitrary point in the OV region, r, <r <r,. The
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key parameter is x, which can only be provided by aturbulence
model. If we consider a polytrope of index m, P ~ r™™, then

w(r) = w(r*)(r?*)xm. (12)

Since by constructionOV =r, —r, < 1,, if wetaker = r,, we
have

xm

~w(r,)

1- xm%). (13

2

w(r,) = w(r*)(l -2

2

Since w(r,) = 0, the extent of the OV = r,/xm and since
H, = r,m™, we finadly derive

ov 1
— ==, 14
H X (14)

From the work of Unno et al., one can deduce that under the
scaling e = Qe, the variable x scales like

X = QX, (15)

and thus in the presence of a V,, the decay law (14) changes
to

ov 11
H_p - ;6 ’ (16)
and thus, finally,
ov(Y) 1
N =0 Q< 1, (17)

which is the desired result: the u-barrier increases the rate of
dissipation of available turbulent kinetic energy and leads to
a decrease of the extent of the OV. Of course, without the
solution of the pertinent equations one cannot evaluate Q but
that was not the purpose of this Letter. To compute both ¢ and
K. one needs to solve the complete dynamical problem. An
attempt in that direction has recently been formulated (Canuto
1998).

| would like to thank R. Stothers for useful discussions on
this topic.
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